

What are we talking about?

We are talking about <u>decision-making regarding fire safety</u> <u>investments</u> (prevention and protection), to <u>avoid or mitigate possible future consequences</u> (losses), due to fires related with company operations and activities, and taking <u>micro-economic parameters into the decision-making</u> process.

Some basics. What is safety? What is risk?

Safety is a state (of the feeling/mind or real) of a person, a situation, a machine, and the alike. Safety **depends on the perspective** from which one looks at the state.

Without quantification it is not possible to take optimal safety measures based on 'a state'.

Many states are thinkable, and they don't tell anything about the consequences, probabilities, measures of states. Moreover, states change all the time and the **description of states doesn't allow to quantify them**.

For this, and to make the quantification of states possible, the **concept** of 'risk' is introduced.

Different types of risk

Type I : small risks – occupational risks with small consequences and high likelihood; <u>example</u>: in case of fire, **a small fire** with at most serious consequences (for instance, one fatality, financial costs < 1,000,000 euro)

Type II: major risks – disaster risks with major consequences and very low likelihood; <u>example</u>: in case of fire, **a large-scale fire** with disastrous consequences (for instance, more than one fatality, financial costs > 1,000,000 euro)

Why fire prevention and mitigation? Delivering products and services : cfr. Attacker in football Fire prevention and mitigation: cfr. Defender in football Sustainable profits and happiness are reached by: Making profits / value creation Avoiding losses / avoid value destruction [Remember: excellent attackers lead to winning matches (ST) while

excellent defenders lead to winning tournaments (LT)!]

5

Fires in Belgium and their toll

Every year about 25,000 house fires, and about 10,000 building fires in Belgium

Consequences: huge human harm and huge material damages;

For instance: numbers of fatalities only in house fires:

- 2014: 69	- 2018: 56		
- 2015: 57	- 2019: 53		
- 2016: 78	- 2020: 76		
- 2017: 53	- 2021: 50		
- 07/2022: already 46			

Some derived facts

Too many fire accidents still happen, even in Belgium with all the regulations, mearures, rules, expertise and experience

Huge losses due to fires are a fact; It pays off to invest in prevention and safety

 \rightarrow So why is it then so difficult to have managers invest in fire prevention and mitigation in organisations?

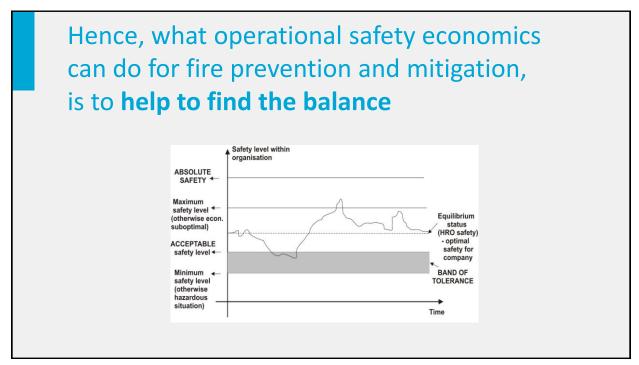
Individual Psychological background: 'Loss aversion' bias
 Suppose you are offered two options: (A) You receive 5,000€ from me (with certainty); and (B) We toss a coin. You receive 10,000€ from me if it is heads, otherwise (if it is tails), you receive nothing. What will you chose?
 Let's now consider two different options: (C) You have to pay me 5,000€ (with certainty); and (D) We toss a coin. You need to pay me 10,000€ if the coin turns up heads, otherwise (in case of tails), you don't need to pay me anything. What will you chose?

Individual Psychological background: 'Loss aversion' bias

By far most people will prefer options (A) in the first case and (D) in the second case.

Hence, they go for the certainty regarding the positive risk (getting $5000 \in$ with certainty), and at the same time they go for taking the gamble as regards the negative risk, and risking to pay $10,000 \in$ with a level of uncertainty (there is a 50% probability that they will not have to pay anything) instead of paying $5,000 \in$ for certain.

→ Result is NOT LOGICAL: "Loss Aversion"


Individual Psychological background: 'Loss aversion' bias

Translating this psychological principle into safety terminology, it is clear that company management would be **more inclined to invest in production ('certain gains') than to invest in (fire) prevention ('uncertain gains')**.

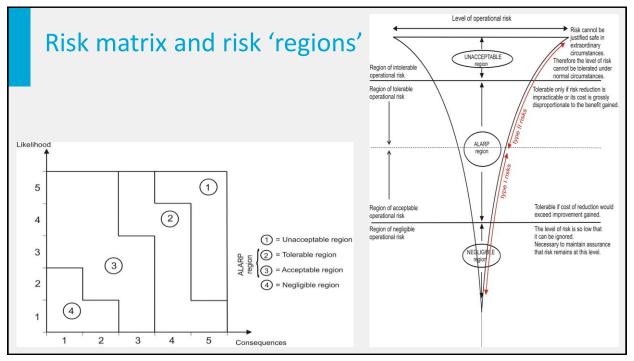
Also, management is more inclined to risk highly improbable accidents ('uncertain losses') than to make large (fire) investments ('certain losses') in dealing with such accidents.

 \rightarrow Management should be aware of this basic psychological principle, and when taking prevention investment decisions, the fact that we have some predetermined preferences in our mind, should be taken into account !

→ Importance of economics for making decisions more objective regarding fire safety and prevention investments

Bold prediction

Operational safety and prevention economics = emerging field of interest to academia and industry


→ Will be much more important in future academic research AND industrial decision-making

Let us now provide **some simple examples** of how it can be useful in industrial practice, **and some background thoughts**

Some important thoughts w.r.t. economics in relation to safety decisions

- Psychological biases/effects
- Different types of risk (small fire scenarios, large fire scenarios)
- Ethical aspects (human harm versus material damage)
- Relative decisions

	Ethical aspects, f.i. the value of a human life
• • • • • • • • •	 capital", "contingent valuation" (WTA, WTP) Approaches lead to the same conclusion: more success in life results in greater personal value Average value of a statistical life varies almost perfectly lineary with the ncome (on the level of countries) Variation from €50,000 to €25,000,000 (factor 500 !) There is actually no reason to use the same value for a human life all over the world: safety is all about making relative decisions

Some simple examples how to use economics for fire prevention - Quantifying risk

Risks consist of hazards/likelihood, exposure, profits/losses

 $R_i = K_i \times G_i$ (i : safety state or 'scenario')

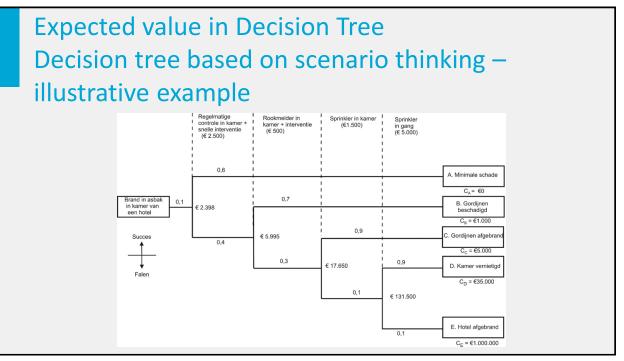
```
R<sub>i</sub> = K<sub>i</sub> x G<sub>i</sub><sup>a</sup> (a=1: risk-neutral attitude; a<1: risk-seeking; a>1: risk-avers)
```

Reality as it happens, could be seen as a continuous expected value of <u>summated scenarios</u> all having a certain likelihood to happen and thereby leading to certain consequences.

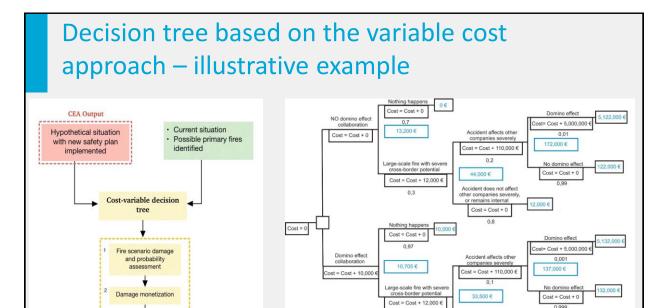
17

Expected value - example

Assume: Very roughly speaking, three possible scenarios (possible states) are possible [remark that in daily reality evidently the number of scenarios is infinite, in which a huge number of scenarios are characterized by extremely low probabilities.]


The 3 scenarios are:

Scenario 1: we go home with new knowledge: probability = 0.90; consequence = $+50,000 \in$ Scenario 2: small fire: probability = 0.099; consequence = $-10,000 \in$ Scenario 3: major fire: probability = 0.001; consequence = $-40,000,000 \in$


The expected value of the risk of this situation (a very simplified reality) can then be calculated for a risk-neutral attitude (a=1) in the following way:

0.9 x 50,000€ + 0.099 x (-10,000€) + 0.001 x (-40,000,000€) = 4,010€

Remark that we also considered the positive risk-scenario in this example. If we focus on negative operational risks (SAFETY!) we can also only take negative scenarios/consequences.

19

Accident does not affect other companies severely

or remains internal Cost = Cost + 0

0.9

22,000 €

20

¥

Backward calculation

Micro-economic concepts to quantify risks and/or to carry out an economic safety analysis or a safety investment analysis

- Hypothetical benefits
- Discount factor
- Time horizon
- Payback period
- Internal rate of return
- Annuities
- Net Present Value
- Disproportion factor
- Opportunity costs

				Type of safety cost	Subcategory of safety cost	OPERATIONAL
b d			^	Initiation	Investigation	OPERATIONAL SAFETY ECOTOMICS A Practice Approximation A Practice Advancement and Process inductions
an fir	0		~		Selection and design	and Process industries
the second			<u> </u>		Material	
S	σ		D		Training	- And
es es	00		5		Changing guidelines and informing	
. <u> </u>		U C		Installation	Production loss	Wit
	mitigati	$\mathbf{\Sigma}$			Start-up	
0 0			_		Equipment	
gori	,	To L	Ц		Installation team	
categories: categories:	σ	L زۆ	SAF	Operation	Utilities	
a te	an	N S	2	Maintenance	Material	-
		.=			Maintenance team	
<u>م</u> بر					Production loss	
ost sub	0				Start-up	
Cost sub	reventi			Inspection	inspection team	
					Transport and loading/unloading of	1
	Ð				hazardous materials	
	>			Logistics and transport safety	Storage of hazardous materials	
	Ð				Drafting control lists	
					Safety documents	
	Q			Contractor safety	Contractor selection	
				contractor safety	Training	4
				Other safety	Other prevention measures	

		Type of avoided accident cost	Subcategory of avoided accident cost	
nd es:	or ES	Supply chain	Production-related (type I + type II) Start-up (type I + type II) Schedule-related (type I + type II)	OPERATIONAL SAFETY ECONOMICS A Proteid Approximation forused on the Operation
es a gori		Damage Legal	Damage to own material/property (type I + type II) Damage to other companies' material/property (type II) Damage to surrounding living areas (type II) Damage to public material property (type II) Fines (type I + type II) Interim lawyers (type II)	
categori subcate	al ben IDED		Specialized lawyers (type II) Internal research team (type II) Experts at hearings (type II) Legislation (type II) Permit- and license (type II)	
su ca:	O Ca	Insurance Human and Environmental	Insurance premium (type I + type II) Compensation victims (type I + type II)	
			Injured employees (type I + type II) Recruitment (type I + type II) Environmental damage (type I + type II)	
enefit	th	Personnel	Productivity of personnel (type I + type II) Training of new or temporary employees (type I + type II) Wages (type I + type II)	
Ber	Hypotheti AV	Medical	Medical treatment at location (type I + type II) Medical treatment in hospitals and revalidation (type I + type II) Using medical equipment and devices (type I + type II) Medical transport (type I + type II)	
		Intervention	Intervention (type I + type II)	
		Reputation	Share price (type II)	
		Other	Accident investigation (type I + type II) Manager working time (type I + type II) Clean-up (type I + type II)	

23

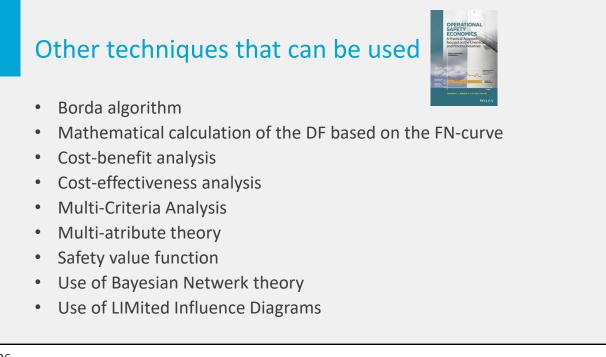
Investment analysis – illustrative example

Assume : safety budget = €500,000. Time horizon = 10 years.

Categories of costs	Subcategories of costs	Value	Type of benefits
Initial costs	Investigation and preliminary study (€)	15,400	Supply chain benefits
	Machine purchase costs (€)	280,000	
	Initial Training (€) Changing layouts and production operations (€)	25,000	Damage benefits
Installation costs	Machine configuration and testing (\in)	5,500	Legal benefits Insurance
	Equipment costs (€) Installation team costs (€)	15,400 25,000	benefits Human and
Operating costs	Energy costs (€/y)	38,500	Environmental benefits
Maintenance costs	Material costs (€/y)	15,000	Other benefits
	Maintenance team costs (€/y)	7,750	
Inspection costs	Inspection team costs (€/y)	2,500	
Other safety costs	Other safety costs (€/y)	2.500	

Type of benefits	Subcategory	Value
Supply chain benefits	Production savings (€/y)	135,000
	Expected additional profits due to increased sales (€/y)	25,000
Damage benefits	Damage to own material/property (€/y)	2,500
Legal benefits	Fines (€/y)	10,000
Insurance benefits	Insurance premium (€/y)	20,000
Human and Environmental benefits	Yearly reduction of days of illness (€/y)	2,500
Other benefits	Cleaning (€/y)	4,500

Investment analysis – illustrative example (2)


Then:

The costs and benefits are either a one-off event or yearly. The one-off costs and benefits are carried out in year zero. The yearly costs and benefits return every year during the whole time horizon (of 10 years) of the investment, and are considered at the end of every year (normal annuity). In total, it concerns €66,250 of yearly costs, and €199,500 of yearly benefits.

Based on the Table of costs, the total **one-off investment cost in year zero** is estimated to be **€476,800**. The Net Present Value can be calculated (based on the given cash-flows from the illustrative tables) if we assume a **discount factor of 3%**. In this case, the **NPV** = **€659,850**. Since this investment represents a positive NPV, it is profitable and can be recommended.

The **PBP of the investment is 3.84 years**, thus after 3 years and about 10 months the investment costs will be earned back via the hypothetical benefits, and in the subsequent period until the time horizon (10 years in this case) there will be hypothetical benefits.

The parameter Internal Rate of Return is also sometimes used to achieve a clear picture of the quality of an investment. In casu is **IRR = 24.93%.**

Conclusions and recommendations – observations

• The **combination of economic aspects** (budgets, costs and benefits, wages, discount factor, etc.) **and safety aspects** (fire safety, evacuation training, technological measures for avoiding disasters, etc.), although two fields regarded to be very important for companies, **is currently discussed too little**

• Fire safety measures are often based on simple risk analyses and 'belly feeling'

• **Costs and hypothetical benefits** of fire safety measures are insufficiently used for feeding economic analyes, and also the **different types of risk, opportunity costs**, etc. are micro-economic parameters that are not employed enough in industrial practice

Ocnclusions and recommendations Bring micro-economic models and approaches into account for fire safety investment decision-making and in a thorough and solid (adequate) way Ideally, also ethical aspects need to be involved in the decision-making process – this new way of determining risks would provide a more balanced picture for the decision-maker Balanced decision-making leads to the creation of more support for fire safety decisions with higher management (investments lead to – hypothetical – profits) AND with citizens and authorities (when, despite all fire safety measures taken, things would go wrong after all) Fire safety fundamentally contributes to the long-term profitability of an organization and in this regard should be seen at the same level as production and innovation

